CDOT Calculate Volume

This document guides you through three methods to calculate volume: Grid, Triangle, and End Area.

Calculating Grid Volumes

Follow the steps below to calculate the volume between the existing surface and the proposed surface using the grid volume method.

1. Select Evaluation > Volumes > Grid Volume from the InRoads menu.

- 2. If using a fence, set the *Fence Mode* with the drop down menu.
- 3. Select the *Original Surface* from the drop down menu.
- 4. Set the *Design Surface* from the drop down menu.
- 5. Enter the desired *Grid Interval*. This should be the same, or a multiple of the interval used for the template drops when the design surface was created.
- 6. **Key-in** the desired *Cut* and *Fill* Factor.

7. **<D> Apply**. The results are displayed in the bottom portion of the dialog box.

8. **<D> Close** to dismiss the *Grid Volume* dialog box.

Note: If using the Fence option the view must be set to *Top*.

Calculating Triangle Volumes

Follow the steps below to calculate the volume between the existing surface and the proposed surface using the triangle volume method.

1. Select Evaluation > Volumes > Triangle Volume from the InRoads menu.

2. Set the desired *Mode*. The most commonly used mode is **Entire Surface**, however, **Fence** and **Selected Shapes** are available.

Note: The **Fence** option only works in the Top view. If the Fence mode is selected in a rotated view quantities are calculated for the Entire Surface and the fence is ignored.

- 3. Select the *Original Surface* from the drop down menu.
- 4. Select the *Design Surface* from the drop down menu.
- 5. **Key-in** the desired *Cut* and *Fill* Factor.

- 6. <D> Add.
- 7. Multiple surface combinations can be added. To add additional surface combinations, repeat steps 3 through 6 in this section for each combination.

Note: The *Mode* selected at the time the **Apply** button is selected will be used for all surface combination calculations.

- 8. **<D> Apply**.
- 9. **<D> Close** to dismiss the *Triangle Volume* dialog box. The results of the triangle volume calculations are displayed in an XML report.

Calculating End-Area Volumes

Follow the steps below to calculate the volume between the existing surface and the proposed surface using the end-area volume method (CDOT standard method).

- 1. Select File > Open from the MicroStation menu bar and open the cross section design file.
- 2. From the InRoads menu, select Evaluation > Volumes > End-Area Volume.
- 3. Select the *Cross Section Set* using the pull down menu or the button then <D> in the desired cross sections.
- 4. Toggle on the check boxes for the surfaces to be used. The existing and design surfaces are determined by the Type, which is set in the **Surface Properties** dialog box.
- 5. Set Imperial Units to Cubic Yards.
- 6. Toggle on the check box for *Create XML Report*.

Note: If Compaction/Expansion factors are not going to be used, skip to step 10.

CDOT Calculate Volume.pdf

- 7. Select **Compaction/Expansion** from the menu explorer.
- 8. Select the desired *Start Station* and *Stop Station* using the drop down menus.
- 9. Key in the desired *Cut* and *Fill* Factor.
- 10. **<D> Add**. Multiple entries can be added by repeating steps 7 through 9 in this section.

- 11. Select the Classification category from the menu explorer.
- 12. Use the *Mass Ordinate* field to **Include** or **Exclude** template components from the volume calculation. <D> in the field to toggle the selection.

- 13. **<D> Apply**. The data will be displayed on the cross sections and an End Area Volume XML Report will appear.
- 14. **<D> Close** to dismiss the *End Area Volume* dialog box.

CDOT Calculate Volume.pdf

15. The report can be saved by selecting File > Save As from the *Bentley InRoads Report Browser*.

